
CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 1

Process Concept (3.1)

Process Scheduling (3.2)

Operations on Processes (3.3)

Interprocess Communication (3.4)

Communication in Client-Server Systems (3.6)

Chapter 3: Processes

© Silberschatz et al, Operating System Concepts 7/e, Wiley, © 2005

Process Concept (3.1)
An operating system executes a variety of programs:

Batch system – jobs
Time-shared systems – user programs or tasks

Textbook uses the terms job and process almost
interchangeably.

Process – a program in execution; process execution
must progress in sequential fashion.

A process includes:
program counter
stack
data section

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 2

Process in Memory

program code

Temporary data
such as: function parameters,
local variables,
return addresses

global variables

memory allocated
dynamically

PC + Resources Allocated

Process Concept (3.1) (cont.)

Process state

As a process executes, it changes state

new: The process is being created.

running: Instructions are being executed.

waiting: The process is waiting for some event to occur.

ready: The process is waiting to be assigned to a
processor.

terminated: The process has finished execution.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 3

Diagram of Process State

Process Concept (3.1) (cont.)

Process Control Block (PCB): Information associated
with each process.

Process state

Program counter

CPU registers (index registers, stack pointers,…)

CPU scheduling information (process priority…

Memory-management information (base and limit registers)

Accounting information (amount of CPU time used, proc.#)

I/O status information (I/O devices for this process)

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 4

Process Control
Block (PCB)

CPU Switch
From Process

to Process

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 5

Process Scheduling (3.2)

Scheduling queues

Job queue – set of all processes in the system.

Ready queue – set of all processes residing in main
memory, ready and waiting to execute.

Device queues – set of processes waiting for an I/O
device.

Processes migrate between the various queues.

Representation of Process Scheduling

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 6

Process Scheduling (3.2) (cont.)

Schedulers

Long-term scheduler (or job scheduler) –
selects which processes should be brought
into the ready queue from a mass storage.

Short-term scheduler (or CPU scheduler) –
selects which process should be executed
next and allocates CPU to one of them.

Process Scheduling (3.2) (cont.)
Schedulers (Cont.)

Short-term scheduler is invoked very frequently
(milliseconds) ⇒ (must be fast).

Long-term scheduler is invoked very infrequently
(seconds, minutes) ⇒ (may be slow).

The long-term scheduler controls the degree of
multiprogramming.

Processes can be described as either:
I/O-bound process – spends more time doing I/O than
computations, many short CPU bursts.
CPU-bound process – spends more time doing
computations; few very long CPU bursts.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 7

Process Scheduling (3.2) (cont.)

Context Switch

When CPU switches to another process, the operating
system must save the state of the old process and
load the saved state for the new process.

Context-switch time is overhead; the system does no
useful work while switching (justify use of threads)

Context switch times are dependent on hardware
support (memory speed, number of registers, etc.).

Operation on Processes (3.3)
Process creation

Parent process create children processes, which, in
turn create other processes, forming a tree of
processes.

Resource sharing
Parent and children share all resources.
Children share subset of parent’s resources.
Parent and child share no resources.

Execution
Parent and children execute concurrently.
Parent waits until children terminate.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 8

Operation on Processes (3.3) (cont.)

Process Creation (Cont.)

Address space

Child process is a duplicate of the parent process (copy of the address
space.)

This copy allows the parent process to communicate easily with the child
process

Child has a program loaded into it.

UNIX examples

fork system call creates new process (code: 0-child)

exec system call (executed by either the parent or the child) used after a
fork to replace the process’ memory space with a new program.

The exec() system call loads a binary file into memory by destroying the
memory image of the program containing the exec system call and then
starts the execution of the binary file.

Process Creation

After the fork we have two different processes running

The parent issue a wait system call

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 9

C Program Forking Separate Process
int main()
{
pid_t pid;

/* fork another process */
pid = fork();
if (pid < 0) { /* error occurred */

fprintf(stderr, "Fork Failed");
exit(-1);

}
else if (pid == 0) { /* new child process */

execlp("/bin/ls", "ls", NULL); /* child overlays its
address space with the command /bin/ls */
}
else { /* parent process */

/* parent will wait for the child to complete */
wait (NULL);/* return the process identifier of a

terminated child so that the parent can tell which of its
possibly many children has terminated */

printf ("Child Complete");
exit(0); /* parent terminates */

}
}

A tree of processes on a typical Solaris

Sched process
creates the init
process which is

the root parent for
all user processes

user login screen process

responsible for telnet and ftp

managing memor
and file systems

executing telnet
then a browser
and an emacs editor User B

User A

executing ls and cat

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 10

Operation on Processes (3.3) (cont.)
Process Termination

Process executes last statement and asks the
operating system to decide it (exit).

Return of output data from child to parent (via wait).
Process’ resources are deallocated by operating system.

Parent may terminate execution of children processes
(abort).

Child has exceeded allocated resources.
Task assigned to child is no longer required.
Parent is exiting.

Operating system does not allow child to continue if its
parent terminates.
Cascading termination (if no parent then no children).

Interprocess Communication (3.4)
Independent process cannot affect or be
affected by the execution of another process.

Cooperating process can affect or be affected by
the execution of another process

Advantages of process cooperation

Information sharing (concurrent access to info)
Computation speed-up
Modularity (separate processes or threads)
Convenience (editing, printing at the same time)

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 11

Interprocess Communication (3.4) (cont.)

There are two models of interprocess communication:
(1) shared memory and (2) message passing

(1) Shared memory:
Producer-Consumer Problem

Paradigm for cooperating processes,

producer process produces information that is consumed by
a consumer process.

unbounded-buffer places no practical limit on the size of the
buffer.

bounded-buffer assumes that there is a fixed buffer size.

Interprocess Communication (3.4) (cont.)
Bounded-Buffer – Shared-Memory Solution

Shared data= buffer (created through system calls)

#define BUFFER_SIZE 10 /* circular array*/
Typedef struct {
. . .

} item;

item buffer[BUFFER_SIZE];
int in = 0;

int out = 0;

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 12

Interprocess Communication (3.4) (cont.)

Bounded-Buffer – Inset() Method
(Producer process)

item nextProduced;

while (true) {
/* Produce an item in nextProduced */

while (((in = (in + 1) % BUFFER SIZE count) == out)

; /* do nothing -- no free buffers */

buffer[in] = nextProduced;

in = (in + 1) % BUFFER SIZE;

{

Interprocess Communication (3.4) (cont.)

Bounded-Buffer – Remove () Method
(Consumer process)

item nextConsumed;
while (true) {

while (in == out)
; // do nothing -- nothing to consume

nextConsumed = buffer[out];
out = (out + 1) % BUFFER SIZE;

/* consume the item in nextConsumed */
{

Solution is correct, but can only use BUFFER_SIZE-1 elements at the
same time

This shared buffer should be implemented by the application
programmer.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 13

Interprocess Communication (3.4) (cont.)

OS mechanism for processes to communicate
and to synchronize their actions without sharing
the same address space.

(2) Message passing – processes communicate
with each other without resorting to shared
variables such as “buffer”.

IPC facility provides two operations:

send(message) – message size fixed or variable
receive(message)

Interprocess Communication (3.4) (cont.)

If P and Q wish to communicate, they need
to:

establish a communication link between them
exchange messages via send/receive

Implementation of communication link

physical (e.g., shared memory, hardware bus)
logical (e.g., logical properties: our concern !)

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 14

Interprocess Communication (3.4) (cont.)

Implementation Questions

How are links established?

Can a link be associated with more than two
processes?

How many links can there be between every pair of
communicating processes?

What is the capacity of a link?

Is the size of a message that the link can
accommodate fixed or variable?

Is a link unidirectional or bi-directional?

Communications Models

Message passing Shared memory

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 15

Interprocess Communication (3.4) (cont.)

Direct Communication

Processes must name each other explicitly:

send (P, message) – send a message to process P
receive(Q, message) – receive a message from process Q

Properties of communication link

Links are established automatically (need process id’s).
A link is associated with exactly one pair of communicating
processes.
Between each pair there exists exactly one link.
The link may be unidirectional, but is usually bi-directional.

Interprocess Communication (3.4) (cont.)

Indirect Communication

Messages are directed and received from mailboxes
(also referred to as ports).

Each mailbox has a unique id.
Processes can communicate only if they share a mailbox.

Properties of communication link

Link established only if processes share a common
mailbox
Each pair of processes may share several
communication links.
Link may be unidirectional or bi-directional.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 16

Interprocess Communication (3.4) (cont.)

Indirect Communication (cont.)

Operations

create a new mailbox
send and receive messages through mailbox
destroy a mailbox

Primitives are defined as:

send(A, message) – send a message to mailbox A
receive(A, message) – receive a message from
mailbox A

Interprocess Communication (3.4) (cont.)

Indirect Communication (cont.)

Mailbox sharing
P1 , P2 , and P3 share mailbox A.
P1 , sends; P2 and P3 receive.
Who gets the message?

Solutions
Allow a link to be associated with at most two processes.
Allow only one process at a time to execute a receive
operation.
Allow the system to select arbitrarily the receiver.
Sender is notified who the receiver was.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 17

Interprocess Communication (3.4) (cont.)

Synchronization

Message passing may be either blocking or non-blocking

Blocking is considered synchronous
Blocking send has the sender block until the message is
received

Blocking receive has the receiver block until a message is
available

Non-blocking is considered asynchronous
Non-blocking send has the sender send the message and
continue

Non-blocking receive has the receiver receive a valid message
or null

Interprocess Communication (3.4) (cont.)

Buffering

Queue of messages attached to the link;
implemented in one of three ways.

1.Zero capacity – 0 messages
Sender must wait for receiver (rendezvous).

2.Bounded capacity – finite length of n messages
Sender must wait if link full.

3.Unbounded capacity – infinite length
Sender never waits.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 18

Communication in Client-Server Systems (3.6)

Sockets

Remote Procedure Calls (RPC)

Remote Method Invocation (Java)

Communication in Client-Server Systems (3.6) (cont.)

Sockets

A socket is defined as an endpoint for
communication.

Concatenation of IP address and port

The socket 161.25.19.8:1625 refers to port
1625 on host 161.25.19.8

Communication consists between a pair of
sockets.

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 19

Socket Communication

Remote Procedure Calls (RPC)

Remote procedure call (RPC) abstracts procedure calls
between processes on networked systems.

Stubs – client-side proxy TO USE the actual procedure
on the server.

The client-side stub locates the server and marshalls
the parameters (packaging the parameters into a form
that can be transmitted over a network).

The server-side stub receives this message, unpacks
the marshalled parameters, and peforms the
procedure on the server.

Communication in Client-Server Systems (3.6) (cont.)

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 20

Execution of RPC

matchmaker = rendez-vous daemon

Remote Method Invocation

Remote Method Invocation (RMI) is a Java
mechanism similar to RPCs.

RMI allows a Java program on one machine
to invoke a method on a remote object.

Communication in Client-Server Systems (3.6) (cont.)

CSE 450/550 Operating Systems Dr. Djamel Bouchaffra

Ch.3: Processes 21

Marshalling Parameters

The stub marshals into a
parcel the parameters A
and B and the name of
the method then sends
this parcel to the server

The skeleton
unmarshals
the

parameters
and invokes
the method
on the server

	Chapter 3: Processes
	Process Concept (3.1)
	Process Concept (3.1) (cont.)
	Diagram of Process State
	Process Concept (3.1) (cont.)
	Process Control Block (PCB)
	CPU Switch From Processto Process
	Process Scheduling (3.2)
	Representation of Process Scheduling
	Process Scheduling (3.2) (cont.)
	Process Scheduling (3.2) (cont.)
	Process Scheduling (3.2) (cont.)
	Operation on Processes (3.3)
	Operation on Processes (3.3) (cont.)
	C Program Forking Separate Process
	A tree of processes on a typical Solaris
	Operation on Processes (3.3) (cont.)
	Interprocess Communication (3.4)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Communications Models
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Interprocess Communication (3.4) (cont.)
	Communication in Client-Server Systems (3.6)
	Communication in Client-Server Systems (3.6) (cont.)
	Socket Communication
	Communication in Client-Server Systems (3.6) (cont.)
	Execution of RPC
	Communication in Client-Server Systems (3.6) (cont.)
	Marshalling Parameters

